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Abstract

In normal Genetic Programming (GP), test case performance is the only signal the
population has to improve on. However, human programmers use other signals to
guide them - they know what "good" code looks like. They often reuse program
patterns across multiple functions, showing Transferability of knowledge between
programming tasks. Pieces of code also become more or less likely in different con-
texts - you don’t see many For loops nested 4 layers deep in codebases generated by
humans. In this thesis, Transferability is explored in the context of Grammatical Evo-
lution, looking at how a population of problems being optimized to solve one problem
can be used to aid in solving a similar problem. To do this, methods were created to
parse existing solutions from a codebase into the Grammatical Evolution representa-
tion, and operators were implemented that switch the GE objective throughout the
process of evolution. A "humanlike" objective was defined which takes into account
the distribution of AST nodes within different program contexts. This was used as
Regularization during GE, in that programs that strayed further from the humanlike
distribution of nodes received a penalty.

It was found that optimizing for one problem first can make it easier to find
a solution to other similar problems, especially when the solution to one problem is
used in the other - however, the amount of pre-optimization and the choice of problem
are of great imprtance. Additionally, optimizing directly for code to become more
"humanlike" via the defined measure was not effective in allowing the population solve
test cases more efficiently, although selecting directly for these metrics did change the
distribution of these metrics in the resulting populations. This shows that while
surrogate objectives can improve performance, they need to be chosen carefully.

Thesis Supervisor: Erik Hemberg
Title: Research Scientist

Thesis Supervisor: Una-May O’Reilly
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Chapter 1

Introduction

Code is time-consuming to write - it requires years of training to be able to write

effectively, many bugs take a significant amount of time to debug, and algorithms

can get relatively complex. The field of program synthesis aims to reduce this bur-

den by synthesizing software automatically [12, 16]. While there are many ways to

tackle this problem, this thesis focuses on one variant of Genetic Programming called

Grammatical Evolution (GE) [25].

1.1 Background

Grammatical Evolution [25] is a technique in which a population of programs is

evolved to solve a particular programming task. Whether or not a program "solves"

a task is usually quantified by the program passing all of a given suite of test cases.

The search space is defined by a Formal Grammar, where the overall solution to the

programming task is able to be expressed as a string within this grammar. Each

program is then represented as a list of integers, which are used to determine which

production rules are used within the grammar in order to generate a program.

In GE, a population of programs is first initialized (Initialization). Afterwards,

this population repeatedly goes through a process of being evaluated to determine

a numerical fitness value (Evaluation), has a subset of the population selected to

survive into the next generation (Selection), and then individuals are combined and
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mutated before proceeding into the next generation (Crossover and Mutation). Over

time, the population becomes more adept at solving the task defined in the fitness

function.

Each program has an associated Abstract Syntax Tree (AST), which defines the

structure of the program. ASTs are composed of different types of nodes, some of

which are more likely to appear in some contexts than others. For example, the

probability that a For node will show up in the context of 5 For loops is much

lower than if it were in the top-level namespace of a program. This work defines

a "humanlike" score based on the likelihood of a particular type of node appearing

at different contexts, relative to some baseline which is learned from a corpus of

programs.

1.2 Motivation and Challenges

This section covers the main areas of motivation of this thesis, which is focused on

Knowledge Transfer from a corpus of programs to a population of programs being

evolved with GE.

1.2.1 Transferring knowledge between similar problems

Human programmers do not learn how to solve programs in isolation. Instead, they

transfer knowledge, and even code, when they solve similar problems. In contrast,

Genetic Programming (GP) methods for Program Synthesis traditionally solve a sin-

gle problem at a time [12, 10, 13]; the GP system is given a suite of problems and

optimizes for each task independently, despite the fact that many program solutions

share subprograms, e.g. iterating over the elements in a list.

Recent work in program synthesis with GP have studied simultaneous synthesis

of multiple functions using genetic programming with scaffolding [4] and parallel

evolution of string library functions [30]. However, none of these have considered

transferring existing knowledge from the start of the synthesis, as is done by a human

programmer.
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Because similar problems have solutions that share subprograms, a population

optimized to solve one problem first will likely have information that’s useful for

solving another problem given that the problems have similar structure. With this in

mind, we explore how alternating the GE objective between different but similarly-

structured problems affects a population’s ability to solve a given task. The effects

of starting a population only from solutions to a similar problem are also explored.

One of the main challenges of this is to design a grammar that will be able to

capture these similarities in structure between the problems, and in general to allow

for the transfer of information from one solution to another.

1.2.2 Transferring knowledge from corpus of human-generated

programs to GE

While there is valuable information within populations of solutions that solve a simi-

lar problem to the one being studied, there is also likely untapped information found

within large corpora of programs - these can provide baselines for what a program

"should" look like, if it were written by a human. When looking at code from GE

runs, many of them have a lack of readability, in that the generated program contains

extra symbols that provide no value to solving the problem at hand, or don’t get

evaluated, and solutions tend to grow unbounded in size [24]. For example, if state-

ments get produced which either have nothing meaningful in their body or always

have their condition evaluate to False, or the number 0 will be added to another

variable repeatedly. GE also doesn’t explicitly take context-sensitivity into account

- while multiple nested loops are relatively unlikely in high-quality human-generated

code, if loops are allowed in GE, multiple nested loops could form, increasing runtime

and decreasing performance. These problems can be manually solved by changing

the grammar to only allow loops in certain locations, but this adds constraints and

limits the types of solutions that can be generated. In an ideal world, we’d like to

be able to optimize not only for fitness, but also for readibility and sensibility of code.
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While optimizing for the number of test cases solved is the most common opti-

mization objective in GE, several other surrogate objectives have shown promise as

potential alternative optimization objectives. One such example is Novelty Search

[15, 13], which defines ’novelty’ as individuals which are more distant, on average, to

the other members of a population, defined by some distance metric. Optimizing for

this formulation of novelty alongside test case fitness has been shown to allow GE to

solve all test cases quicker.

While novelty is one surrogate objective that can be optimized for, there are

several other aspects of code that can be optimized for that would ideally make the

code more "humanlike", such as McCabe complexity, Tree Size, and Lexical Diversity

[29]. These and other metrics have been proposed to measure various aspects of code

quality, readability, and complexity. In addition, properties of a program’s AST can

give some insight into the structure of the program [29]. In this work, we define

a Humanlike Score for programs, which is defined as the similarity between the

distribution of AST nodes found at different contexts within a program, relative to a

target population of programs.

With this in mind, we propose to make the ASTs of programs look similar to those

generated by humans, based on the likelihood of the occurence of nodes in the tree,

relative to a baseline corpus of programs. This provides one measure in which we can

make GE code similar to humanlike code - the main challenge, and main question, is

just if this provides enough signal to be useful for making the code more effective or

readable.

1.3 Research Questions

The first set of research questions is related to the transferability of information

between populations of programs (individuals). For this set of research questions,

the aim is to understand how information can be transferred between problems with

similar structure.
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• RQ1.1: Can optimizing a GP program synthesis population for one task make

it more efficient at solving a similar task?

• RQ1.2: Can GP program synthesis solve complex tasks by combining the so-

lutions to simpler ones?

• RQ1.3: Does GP program synthesis benefit from the use of intermediate goals?

• RQ1.4: How can existing knowledge in the form of existing programs be incor-

porated in the GP search?

The questions above focused on tranferring knowledge between programs that

solve similar tasks. Our second set of research questions aims to see how knowledge

can be transferred between high-quality programs and GE search in general, not re-

stricting only to programs with similar function. Specifically, they aim to understand

how optimizing for code that match the AST Node distribution of a given target pop-

ulation affects the outcomes of GE. This is examined both in terms of the readability

and interpretability of generated solutions, along with the final test case performance.

• RQ2.1: Does optimizing directly for a desired value for program metrics actu-

ally lead to a population where these metrics take on the desired value?

• RQ2.2: Can optimizing directly for these code metrics result in increased test

case performance?

• RQ2.3: Does optimizing for these code metrics make our solutions more hu-

manlike?

• RQ2.4: Is is easier to find solutions when starting from pieces of code that

have been optimized to be more humanlike?

1.4 Contributions and Thesis Structure

In this thesis, the following contributions were made:
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1. A method for parsing programs into the GE representation, to initialize popu-

lations from existing programs.

2. We find that without tuning operators and grammatical structure to capitalize

on information transfer between similar problems, performance gains aren’t

found when initializing a population with solutions to similar problems RQ1.2,

1.4.

3. A framework for switching the optimization objective throughout a GE run.

4. It is found that when optimizing for a program to solve multiple problems, it

can be beneficial to start with the harder problem as a subgoal as opposed to

the easier problem, and that optimizing for subproblems first leads to a much

greater chance of solving the given problem RQ1.1, 1.3.

5. The development and investigation of a context-sensitive Humanlike Score,

which measures how similar a program’s AST is to a target corpus of programs.

6. We find that optimizing for Humanlike score can lead to programs that are read-

able, while also showing that certain settings can lead to degenerate solutions,

but directly optimizing for only this Humanlike score performs significantly

worse than Random Search RQ2.2, 2.3.

7. We find that initializing from a population optimized for the Humanlike score

doesn’t have significant improvements to test case performance, although fur-

ther tuning of this metric could be required RQ2.4

The rest of this thesis will be structured as follows. Chapter 2 will walk through

the background and related work. Chapter 3 will cover the experiments in the Trans-

ferability of knowledge between populations of related solutions, aimed at answering

RQ1.1-1.4. Chapter 4 will cover the experiments in optimizing for this Humanlike

Score in the selection phase, aimed at answering RQ2.1-2.4. Chapter 5 will walk

through the main conclusions reached in this work, along with directions for future

research.
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Chapter 2

Background and Related Work

In this chapter, we’ll cover the background relevant to this work and describe the

datasets used in the experiments. Chapter three will cover our experiments on the

transferability of GE solutions to similar problems, Chapter four will go over our

methods for making code more humanlike, and Chapter five will cover the main

conclusions we reached.

2.1 Background

Here we cover the background for the techniques discussed in this thesis.

2.1.1 Program Synthesis with Genetic Programming

GP cares about automatic programming [23]. In GP, one manifestation of this is as

program synthesis, which is formulated as an optimization problem akin to system

identification: find a program 𝑞 from a domain 𝑄 that minimizes combined error on

a set of

input-output cases D = [𝑋, 𝑌 ]𝑁 , 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 , with 𝑞 : 𝑋 ← 𝑌 . Typically an

indicator function measures error on a single case: 1: 𝑞(𝑥) ̸= 𝑦. The program 𝑞 can be

represented by some language 𝐿. We can formulate the program synthesis problem

as arg min𝑞∈𝑄 𝑞(𝑋)− 𝑌
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Work in program synthesis has considered specific programming techniques, such

as recursion, lambda abstractions and reflection. Some other work focused on partic-

ular programming language such as C, while others studied specific coding problems

such as caching, [21, 19, 2, 35, 32, 34, 33]. From a technique perspective, other ap-

proaches covered implicit fitness sharing, co-solvability, trace convergence analysis,

pattern-guided program synthesis, and behavioral archives of subprograms, [16]. Im-

portant progress for program synthesis in GP was the introduction of a benchmark

suite of 29 problems, systematically selected from sources teaching introductory com-

puter science programming [12, 10, 13].

Transparency is a desirable property of GP program synthesis solutions in addition

to performance. Previous work use transparency to refer to human readability and

interpretability [13]. We extend this to also consider transferability, the ability of a

program synthesis solution to be transferred to other program synthesis tasks.

2.1.2 Grammatical Evolution

Grammatical Evolution (GE) is a genetic programming algorithm where a Backus

Naur Form (BNF) context free grammar is used in the genotype to phenotype map-

ping process [25]. The BNF expresses a production rule as a non-terminal left-hand

side, a separator and a list of productions on the right hand side, each production can

contain terminals and/or non-terminals. Formally, a context free grammar (CFG) is

a four tuple 𝐺 = ⟨𝑁,Σ, 𝑅, 𝑆⟩, where: 1) 𝑁 is a finite non-empty set of non-terminal

symbols. 2) Σ is a finite non-empty set of terminal symbols and 𝑁 ∩ Σ = ∅, the

empty set. 3) 𝑅 is a finite set of production rules of the form 𝑅 : 𝑁 ↦→ 𝑉 * : 𝐴 ↦→ 𝛼 or

(𝐴,𝛼) where 𝐴 ∈ 𝑁 and 𝛼 ∈ 𝑉 *. 𝑉 * is the set of all strings constructed from 𝑁 ∪ Σ

and 𝑅 ⊆ 𝑁 × 𝑉 *, 𝑅 ̸= ∅. 4) 𝑆 is the start symbol, 𝑆 ∈ 𝑁 [5]. In GE the probability

of selecting a production from a rule is approximately uniform, with the probability

depending on the number of productions.

The sentences a grammar can produce forms the language 𝐿. The grammar is

a starting point for a two step sequence of mappings that decode a genotype to a

program(phenotype):
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1) Genotype to derivation tree: The genotype, an integer sequence, is read,

one integer at a time, to rewrite non-terminals to terminal via the rules. This gen-

erates a rule production sequence which can be represented as a derivation tree. At

each step in the rewriting the integer “gene” determines which specific element in

the list of right hand side productions expands the current non-terminal. Typically

the production at the (gene modulo number of productions in the rule) position is

selected.

2) Derivation tree to phenotype/program: The leaves (terminals) of the

derivation tree constitute the executable code or program that GE can evaluate.

Programs in GE are evaluated in the same way as in GP systems. For each

test case, a value is assigned based on the distance between the desired outputs and

program outputs when executed with the associated inputs. Selection, is based on

performance of program on required task. GE’s genotype-phenotype mapping allows

crossover and mutation operators to operate on the genotype or the derivation tree [7].

One point crossover exchanges integers between crossover points on the genotype.

Here, the interpretation step raises locality issues, however the grammar and the

rewriting assure crossover will result in syntactically valid offspring [31]. Like in GP,

though in grammatical form in GE, the abstraction of functions and terminals, i.e. the

language from which solutions are composed, impacts the solutions that constitute the

search space. Further, the language and grammar biases the likelihood of generating

solutions within the search space [22].

GE has been used to investigate dynamic environments, defined as a spectrum

from problems where the change is predictable to problems which is completely ran-

dom [6]. The work on dynamic environments deals with multiple tasks, but the aim is

often to solve the task at hand well, instead of finding a general solution as for multi-

ple tasks, i.e. max 𝑞𝑡𝑖 instead of max q. Additionally, the impact of providing existing

similar solutions and reverse mapping of solutions has not been investigated for pro-

gram synthesis. In the next section we describe the methods we use for investigating

transferability in program synthesis.
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2.1.3 Multi Task Learning

Multi-task learning and the related optimization is concerned with how to solve mul-

tiple optimization problems (tasks) simultaneously to improve on the performance

of solving each task independently. The assumption is that there exists some useful

knowledge in common for solving related tasks and that the useful knowledge acquired

when solving one task can assist in solving another task if they are similar [36]. In

GP there have been multiple studies on GP regarding modularity, e.g. a survey of

modularity in genetic programming [8], without explicit focus on multiple task.

Previous work in GP has focused on other domains than program synthesis. For

example, multi task visual learning using genetic programming [14] creates popula-

tions of individuals where each individual is composed of trees that solves different vi-

sual tasks. Automatic generation and exploitation of related problems in genetic pro-

gramming [18] studies symbolic regression and methods to deal with multiple tasks.

Functional modularity for genetic programming [17] looks at boolean functions. More

recent work studies automating knowledge transfer with multi-task optimization [28]

for boolean problems with Cartesian GP.

There is some recent work for program synthesis with GP. For example, a study of

simultaneous synthesis of multiple functions using genetic programming with scaffold-

ing [4]. The parallel hierarchical evolution of string library functions [30] uses string

manipulation in the HERCL programming language. Finally, there is an evolutionary

framework for HPC [27] investigating Python code for 29 array/vector problems that

uses a grammar which is a subset of Python.

One important area for multi-task learning is transferability. This is not solely

concerned with learning multiple tasks within the search process itself; it also covers

the utilization of existing solutions to guide the initial solutions. There has been

work showing the importance of initialization [20]. In addition, there are studies

about favorable biasing of function sets using run transferable libraries [26] which

studies boolean problems and how to transfer solutions into libraries between runs.

We investigate how to take existing programs(phenotypes) and “reverse” map them
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to genotypes that we can add to the population.

Formally, multi-task learning deals with multiple programs q = {𝑞0, . . . , 𝑞𝑛} Sim-

ilar tasks have a low distance according to some measure, 𝛿 = 𝑓(𝑞𝑖, 𝑞𝑗), 0 ≤ 𝛿 ≤ 𝐶.

The language 𝐿 must be capable of expressing all the programs in q, 𝐿𝑖 ⊆ 𝐿. Domain

knowledge is expressed as existing solutions, 𝐷 = {𝑞𝑖, . . . , 𝑞𝑗}.

2.2 Datasets Used

Here we describe the datasets used for the experiments in this thesis, along with

covering the differences between them.

2.2.1 6.00.1x Dataset

The selection criteria of the GP benchmark suite was mostly concerned with problems

that had input/output examples, multiple solutions, no synthesis method bias, and

which represent actual programming tasks [11]. We need to expand on these criteria

in order to investigate transferability and generalization in program synthesis. Thus,

we identify programming problems that are similar according to human experts, com-

posable into a combined program, obtained from learning designers and instructors,

and that provide us with access to a corpus of correct and incorrect human solutions.

We select two new program synthesis problems that are identified as being similar

by human experts. In our case, the instructor and learning scientists analyzed the

learning design of MITx 6.00.1x Introduction to computer science and programming

in Python (6.00.1x ), a MOOC offered on the EdX platform [3]. They are also from

an introductory programming course, so they should be as complex as the problems

in the existing GP program synthesis benchmark suite [12].

The learning design for 6.00.1x is such that the problems are gradually built on

information presented in lecture videos and optional practice for students in short

exercises(finger exercises). We focus on the first two problem sets Problem Set 1-1

and Problem Set 1-2 , these problem sets check the students understanding of control

flow. We have submission history data from a large-scale scraping effort from 2016
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Term 2 and 2017 Term 1. We consider only consider the behavior of the 3,485 certified

students.

We also measure similarity based on python keywords. Based on the Pearson

correlation the correct student submissions for the two problems we focus on are all

quite similar to each other, and the “gold standard” solution. Around 3% of the

correct solutions are dissimilar to the “gold standard” based on a similarity threshold

of 50% [3].

Problem set 1-1: Count Vowels

def problem_set_1_1(s: str) -> int:

"""

Assume `s` is a string of lower case characters.

Write a program that counts up the number of vowels contained in

the string `s`. Valid vowels are: `'a', 'e', 'i', 'o'`, and

`'u'`. For example, if `s = 'azcbobobegghakl'`, your program

should print:

`Number of vowels: 5`

"""

ctr = 0

for i in s:

if i == "a" or i == "i" or i == "o" or i =="e" or i == "u":

ctr = ctr + 1

print("Number of vowels:", ctr)

return ctr

Existing solutions are not many. We reverse map ≈ 2, 000 solutions and end up

with 2 distinct solutions.

Problem set 1-2: Count bob

def problem_set_1_2(s: str) -> int:

"""

Assume `s` is a string of lower case characters.

Write a program that prints the number of times the string `'bob'`

occurs in `s`. For example, if `s = 'azcbobobegghakl'`, then your

program should print

`Number of times bob occurs is: 2`
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"""

ctr = 0

for i in range(len(s) - 2):

if s[i] == "b" and s[i + 1] == "o" and s[i + 2] == "b":

ctr = ctr + 1

print("Number of times bob occurs is:", ctr)

return ctr

Existing solutions are even fewer. We reverse map ≈ 1, 000 solutions and end up

with 1 distinct solution.

Combination of Problem Set 1-1 and 1-2 We create a combination of Problem

Set 1-1 and Problem Set 1-2 called Problem Set 1-1, 1-2 Combo. Note that there are

no existing solutions for this combination since we create this problem for Multi-task

Program Synthesis GP.

def problem_set_1_1_2_combo(s: str) -> Tuple[int, int]:

"""

Assume `s` is a string of lower case characters.

Write a program that prints the number of vowels and number of

times the string `'bob'` occurs in `s`. For example, if `s =

'azcbobobegghakl'`, then your program should print

```

Number of vowels: 5

Number of times bob occurs is: 2

```

"""

ctr_1 = 0

ctr_2 = 0

for i in range(len(s)):

if i < (len(s) - 2) and s[i] == "b" and s[i + 1] == "o" and s[i + 2] == "b":

ctr_2 = ctr_2 + 1

if s[i] == "a" or s[i] == "i" or s[i] == "o" or s[i] == "e" or s[i] == "u":

ctr_1 = ctr_1 + 1

print("Number of vowels:", ctr_1)

print("Number of times bob occurs is:", ctr_2)

return ctr_1, ctr_2

We used the grammar in Figure 2-1 to both reverse map and generate solutions.
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!start : initial_assign | "i0 = int(); i1 = int(); s0 = str();
res0 = int(); res1 = int()\n" initial_assign

!initial_assign : (int_var equals num "\n" initial_assign)
| (int_var equals num "\n" code)
| (string_var equals "str()\n" initial_assign)

!equals : " =" | "=" | "= " | " = "
!plusequals : " +=" | " += " | "+=" | "+= "
!code : (code statement "\n") | (statement "\n")
!statement : assign | compound_stmt
!compound_stmt : for | if
!assign : int_assign | inc
!inc : int_var plusequals int
!for : for_iter_string
!bool : bool_string | (bool_string bool_op bool)
!bool_op : " and "|" or "
!bool_string : string_cmp | in_string
!in_string : "s0 in " str_tuple
!str_tuple : "(" s_or_comma ")"
!s_or_comma : string_alpha_low | (string_alpha_low ", " s_or_comma)
!if : ("if " bool ":{:\n" code ":}") | ("if (" bool "):{:\n" code ":}")
!number : num
!num : "0"|"1"|"2"
!int_var : "i0"|"i1"|"res0"|"res1"
!int_assign : int_var "=" int
!int : int_var | ("int(" number ".0)") | num
!string_var : "in0[i1+" num "]" | "s0" | "in0[i1]"
!string_cmp : string_var string_equals string_alpha_low
!string_equals : "==" | " == " | "== " | " =="
!for_iter_string : ("for s0 in in0:{:\n" if "\n:}")

| ("for i1 in range(len(in0)-" num "):{:\n" if "\n:}")
!string_alpha_low : "'b'"|"'a'"|"'e'"|"'i'"|"'o'"|"'u'"

Figure 2-1: EBNF grammar for Problem Set 1-1 , Problem Set 1-2 and Problem Set
1-1, 1-2 Combo. Some of the formatting symbols were specific options to the Lark
parser that was used [1].
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2.2.2 GitHub Dataset

In order to generate a distribution for what metrics humanlike code has, we needed

to get software from real-world, high-quality projects. There are many high-quality

open-source codebases available online on GitHub - with this in mind, we decided

to use the same GitHub corpus used in [29], which minded real-world, open-source

projects online. From here on, we’ll refer to this dataset as the Github Corpus.

Only projects with over 150 stars on GitHub were mined, to ensure a higher quality of

code. The GitHub corpus consists of programs that take in either 2, 3, or 4 arguments,

and are used for a variety of applications. Class methods were excluded because they

usually do relatively simple tasks. We used a total of over 40,000 Github programs,

and each program consisted of the function definition and the corresponding code.

2.2.3 Comparison Between Datasets

Each of the datasets described above differs in terms of the number and diversity of

the programs inside, along with the sources they were generated from.

The 6.00.1x dataset has the advantage of just looking at solutions to two problems

that are very similar in structure, which are to count vowels and count the number

of occurrences of the word "Bob". However, the one main drawback here is the fact

that such a small number of programs were produced - only a few unique solutions

were parsed for each problem, limiting the diversity. The Github dataset, on the

other hand, contains thousands of programs, which is necessary in order to calculate a

distribution of program metrics. Additionally, the code is high quality - each function

was taken only from repositories with over 150 stars, which is quite a high bar.

However, has its associated downsides. First, the dataset isn’t specialized for a small

subset of problems, as the 6.00.1x dataset is. Second, this diversity of programs has

the potential to wash out meaningful information - if you compute the average over a

large range of programs, then all the programs can start to blend in with each other.
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Chapter 3

Transferability in GE Solutions

Traditional Genetic Programming methods for Program Synthesis have focused on

solving a single problem at a time. However, many programs share subprograms

- many programs utilize functions to iterate through the elements of an array, for

example. In this chapter, we investigate the transferability of programs (solutions)

for GP program synthesis. Specifically, we explore the effectiveness of optimizing a

population for one task with GE before optimizing it for a similar, related problem,

and investigate the use of intermediate goals for solving complex problems. We find

that having a population solve one task before working to solve a related task can

have positive results, and that choosing harder intermediate goals over easier ones

can be beneficial.

We investigate the following research questions, restated from Chapter 1:

• RQ1.1: Can optimizing a GP program synthesis population for one task make

it more efficient at solving a similar task?

• RQ1.2: Can GP program synthesis solve complex tasks by combining the so-

lutions to simpler ones?

• RQ1.3: Does GP program synthesis benefit from the use of intermediate goals?

• RQ1.4: How can existing knowledge in the form of existing programs be incor-
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porated in the GP search?

First we need to identify program synsthesis problems suitable for investigating

transferability. The selection criteria of the existing GP benchmark suite was mostly

concerned with problems that had input/output examples, multiple solutions, no

synthesis method bias and represented actual programming tasks [11]. We need to

expand on these criteria for our study of transferability in program synthesis, so we

generate solutions for two python programming problems from MITx 6.00.1x Intro-

duction to computer science and programming in Python (6.00.1x ), a MOOC offered

on the EdX platform. From this course we identify programming problems that are

similar according to human experts, composable into a combined program, obtained

from learning designers and instructors, and that provide us with access to a corpus

of correct and incorrect human solutions [3].

We use a version of grammatical GP, Multi-task Program Synthesis GP, in

which the task at hand is varied throughout the process evolution. We use informa-

tion gained from solving one program synthesis problem (task) in another program

synthesis problem (task). We look at the effectiveness of solving a task by initializing

a population of existing programs that solve a similar task, for multiple combinations

of similar tasks. The existing programs we use for initialization are combinations

of random (normal GP initialization), reverse mapped from human solutions, and

programs generated from previous runs of Multi-task Program Synthesis GP.

The chapter is structured as follows. Section 3.1 presents methods, Sections 3.2

and 3.3.4 present experiments and their results.

3.1 Method

We present our methods regarding transferability through multi-task learning and

reverse mapping of existing solutions.

Multi-task Program Synthesis GP is shown in Algorithm 1. Our Multi-task

Program Synthesis GP implementation is based on the PonyGE2 [7] grammar guided

genetic programming system, in particular the work by [13].
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Algorithm 1 Multi-task Program Synthesis GP(𝐷,𝑆,𝐷𝐾 , 𝐺,Θ)
Parameters: D test cases, 𝑆 task schedule, 𝐷 existing solutions as knowledge base,
𝐺 grammar, Θ hyper parameters
Return: Population
1: 𝑃 ← ∅ ◁ Population
2: for 𝑑 ∈ 𝐷 do ◁ Reverse map existing programs
3: 𝑃 ← 𝑃∪ reverseMap(𝑑,𝐺) ◁ Reverse map, see Alg. 2
4: 𝑃 ← 𝑃∪ initialize(Θ, 𝐺) ◁ Initialize population
5: 𝐹 ← getTask(𝑆, 0) ◁ Get the fitness function for task(s)
6: 𝑃 ← evaluate(𝑃,Θ, 𝐹 ) ◁ Evaluate pop fitness
7: for 𝑡 ∈ [1, . . . ,Θ𝑇 ] do ◁ Iterate over generations
8: 𝑃 ′ ← selection(𝑃,Θ) ◁ Select new population
9: 𝑃 ′ ← variation(𝑃 ′, 𝐺𝑃 ,Θ) ◁ Subtree mutation and crossover

10: 𝐹 ← getTask(𝑆, 𝑡) ◁ Get the fitness function for task(s)
11: 𝑃 ′ ← evaluate(𝑃 ′,Θ, 𝐹 ) ◁ Evaluate population
12: 𝑃 ← replacement(𝑃 ′,Θ) ◁ Update population
13: return 𝑃 ◁ Return final population

The key GP extensions are the:

Multiple tasks Synthesizing programs for multiple tasks and switching between

the different tasks. This is one way of providing more general knowledge between

tasks.

Initialization with similar programs Initializing the population with programs

that solve a similar task.

Reverse map of existing programs Parsing existing programs to an evolvable

representation. This is one method of providing domain knowledge.

3.1.1 Multi task program synthesis scheduling

We look at both serial and parallel scheduling for multiple program synthesis. With

serial schedule one task is first solved and then another. With a parallel schedule

multiple tasks are solved at the same time. Existing solutions to tasks are also

provided.

Serial One task, 𝑞𝑡=𝑘
𝑖 is solved, then another task, 𝑞𝑡=𝑘+1

𝑗 is solved. The set of

tasks are q and 0 ≤ 𝑖, 𝑗 ≤ |q|, 𝑘 ∈ Z

Parallel Multiple tasks are solved at the same time, 𝑞𝑖&𝑞𝑗
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Serial & Parallel Tasks can be solved both in serial and parallel, 𝑞𝑡=𝑘
𝑖 and

𝑞𝑡=𝑘+1
𝑖 &𝑞𝑡=𝑘+1

𝑗

Existing solutions Existing solutions to tasks are provided to the initial popu-

lation a) Existing source code(solutions) for other programs, 𝐷𝐻 b) Existing evolved

solutions in the Multi-task Program Synthesis GP representation for other pro-

gram synthesis task, 𝐷𝑆 c) Randomly generated programs using the standard GP

initialization procedures, 𝑅

There are many possible scheduling combinations for tasks. A few examples of

task scheduling are shown in Figure 3-1.

Initialization with similar programs

Seeding the Multi-task Program Synthesis GP search with similar programs is one

way of providing domain knowledge for the program synthesis. This seeding can be

seen as an extreme variant of serial multi task switching, i.e. the first task has been

synthesized to completion and provides a starting point for the next task. We provide

two methods for initialization in addition to standard GP initialization methods.

Existing Human Source Code We parse existing source code, see Section 3.1.2,

to the Multi-task Program Synthesis GP representation. This source code has

been used to solve problem 𝑞𝑖.

Existing Evolved Source Code We run Multi-task Program Synthesis GP

to solve a problem, 𝑞𝑖 and use these solutions as the initial population for another

problem 𝑞𝑗.

3.1.2 Reverse mapping of existing solution to Multi-task Program

Synthesis GP representation

Overview of the reverse mapping of existing source code to Multi-task Program

Synthesis GP representation is shown in Algorithm 2 and 3. The mapping first

preprocess the program and refactors variables and function names to a consistent

naming scheme. Then it recursively parses a program depth-first left-to-right and re-
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Figure 3-1: Examples of multi task scheduling with serial schedules, parallel schedules,
and initialization with similar solutions. The examples are separated by the dotted
lines.
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Algorithm 2 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑀𝑎𝑝(𝐷𝐾 , 𝐺, 𝑃 )
Parameters: 𝐷𝐾 existing solution, 𝐺 grammar, 𝑃 parser
Return: List of integers
1: 𝐷′

𝐾 ← preprocessProgram(𝐷𝐾) ◁ Refactor variable and function names
2: 𝑆 ← getStartSymbol(𝐺) ◁ Get start symbol
3: 𝑝← parse(𝐷′

𝐾 , 𝑃, 𝑆) ◁ Parse solution to a tree
4: i← reverseMapSubProgram(𝑝,𝐺, 𝑃 ) ◁ Parse subprograms, see Alg. 3
5: return i ◁ Return GE representation

Algorithm 3 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑀𝑎𝑝𝑆𝑢𝑏𝑃𝑟𝑜𝑔𝑟𝑎𝑚(𝑝,𝐺, 𝑃 )
Parameters: 𝑝 subprogram tree, 𝐺 grammar, 𝑃 parser
Return: List of integers
1: i← [] ◁ Initialize GE genome
2: r← getRules(𝑝,𝐺) ◁ Get rules
3: for 𝑖 ∈ [0, . . . , |r|] do ◁ Iterate over rules
4: 𝑟 ← r𝑖 ◁ Get rule
5: 𝑀 ← True ◁ Match variable
6: if |𝑟| == |𝑝.children| then ◁ Check number of children
7: for 𝑗 ∈ [0, . . . , |𝑟|] do ◁ Iterate over productions
8: 𝑀 ←𝑀&(𝑟𝑗 == 𝑝[𝑗]) ◁ Does product match child node
9: if 𝑀 == True then ◁ Found match

10: break ◁ Break iteration on first match
11: i← i ∪ 𝑖 ◁ Add production choice to genome
12: for 𝑐 ∈ 𝑝.children do ◁ Recurse over children
13: i← i∪ reverseMapSubProgram(𝑐,𝐺, 𝑃 ) ◁ Add production choice to genome
14: return i ◁ Return GE representation

turns a list of integers indicating production choices (GE genome). The first matching

production will be returned.

In the next section we will describe the experimental setup and the results.

3.2 Experiments

We used the 6.00.1x dataset, described in Chapter 1 of this thesis, for the following

experiments. Our setup and experimental design are designed in greater detail below.
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Table 3.1: Experimental settings

Parameter Value
Generations 200 )
Population Size (P) 800
Elite size 8
Replacement generational
Initialization PI grow
Init genome length 200
Max genome length 500
Max init tree depth 15
Max tree depth 17
Crossover probability 0.8
Mutate duplicates True

Novelty selection [15]
Knobelty archive sample size (𝐶) 100
Knobelty tournament size (𝜔) 6
Knobelty function Exponential
Knobelty 𝜆 Generations/10

3.2.1 Setup

We report results on 100 runs. We report program synthesis performance in the same

way as previous work [12, 13], in terms of how many runs out of 100 resulted in one or

more programs that solved all the out of sample (test) cases. All other reported values

are averages over 100 runs. We ran all experiments on a cloud (OpenStack) VM with

24 cores, 24GB of RAM using Intel(R) Xeon(R) CPU E5-2450 v2 @ 2.50GHz.

The set of static parameters we use throughout all our experiments is listed in

Table 3.1. We use subtree crossover. Fitness is the number of correct test cases solved

during training, also same as [12].

3.2.2 Experimental Design

In this work, we explored two main experimental approaches: Multi Task Learning,

and Reverse Mapping. For each approach, multiple variants were tested across a

range of parameters. For Multi Task Learning, we specify both the Task Schedule

(tasks to be solved, and in what order) and the relative amount of time to spend on

each task. For Reverse Mapping, we specify which set of solutions we initialize the

population with, along with the percentage of the population that is initialized from

those solutions. The variants used in the experiments are described in Table 3.2. The
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Table 3.2: Experimental Variants

Variant Name Feature
Multi task learning

EarlySingleSwitch Change task after 25% of generations have passed
MedSingleSwitch Change task after 50% of generations have passed
LateSingleSwitch Change task after 75% of generations have passed
OneThenTwo Initially optimize for Problem Set 1-1 and switch to Problem Set 1-2
TwoThenBoth Initially optimize for Problem Set 1-1 and switch to Problem Set 1-1, 1-2

Combo
TwoThenOne Initially optimize for Problem Set 1-2 and switch to Problem Set 1-1
TwoThenBoth Initially optimize for Problem Set 1-2 and switch to Problem Set 1-1, 1-2

Combo
Reverse mapping

HalfFromDir Initialize 50% of the population from the given directory of solutions, generate
the rest randomly

AllFromDir Initialize 100% of the population from the given directory of solutions, generate
the rest randomly

UserSolutions Infuse population with student-submitted solutions
GeneratedSolutions Infuse population with solutions evolved to solve the task by a previous GP

run
NonDiverse Infuse population with multiple copies of a single program that doesn’t solve

either task

names in the figures are concatenations of these. Baseline refers to a run without

multi tasks and random initialization.

3.3 Results

Table 3.3 outlines the main experiments we ran, along with their results. We report

the number of runs in which at least a single program passed all of the test cases by

the last generation. Below we delve into the major takeaways and analysis from the

experiments.

3.3.1 All problems are not created equally

Although the three problems are similar in structure, they have varying difficulties

given our grammar. Figure 3-2 shows this difference - given the same population

size and number of generations, going after the Problem Set 1-1, 1-2 Combo alone is

extremely difficult, and Problem Set 1-1 appears to be much more easily solvable than

Problem Set 1-2 . This could be due to the fact that each of the vowels in Problem
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Figure 3-2: Percentage of runs which contained a program that solved all of the test
cases, when trying to solve a single problem (Problem Set 1-1 , Problem Set 1-2 , or
Problem Set 1-1, 1-2 Combo)

Set 1-1 gives an additional signal that the program is doing something right, a sort

of gradient - every time the program stumbles upon an additional vowel incorporated

into the letters it checks for, it solves additional test cases. This will be important in

the following sections.

3.3.2 Solving Two Problems at the Same Time: Choose a

Harder Intermediate Task

Here we try to answer RQ1.2, 1.3: How do intermediate goals affect the GE search,

and can GE combine solutions to simpler tasks together to solve a more complex

problem? For solving Problem Set 1-1, 1-2 Combo, useful intermediate tasks are to

solve each of the Problem Set 1-1 and Problem Set 1-2 problems individually before

moving to solve the combined problem. With this in mind, we performed multi-task

learning by starting from either Problem Set 1-1 or Problem Set 1-2 and changing the

task to solving Problem Set 1-1, 1-2 Combo at some point throughout the evolution.

The percentage of runs in which at least a single program solved all given test cases
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is given in Figure 3-3. In this plot, each of the runs was given 200 generations to

run. However, they are displayed as being shifted in order to line up the point at

which they started working on the final problem; for example, if a population started

by spending 50 generations on Problem Set 1-1 and then switched to spending 150

generations on Problem Set 1-2 , then it would be shifted back 50 generations relative

to the rest of the lines, so that there’s a common point where all problems start the

second problem.

One thing to notice is that spending more time optimizing for the intermediate

task generally had positive results - populations that spent more time optimizing for

the subtask (LateSingleSwitch) generally had a higher upward trajectory than those

that spent less time optimizing for the subtask (EarlySingleSwitch). This helps us

answer RQ1.3, in that GE can benefit from intermediate goals. It also helps us answer

RQ1.2: because Problem Set 1-1, 1-2 Combo is modular and needs solutions to both

Problem Set 1-1 and Problem Set 1-2 , this shows that when the grammar allows for

the easy combination of multiple subproblems, a mopre complex task can be easier

to solve. One reason for this could be that spending more time optimizing for the

intermediate task infuses the population with more individuals that can competently

solve test cases, so when the population is faced with the more complex problem,

it’s individuals are each more likely to already have the solution to the intermediate

problem, and thus can solve the combination problem easier. This effect can be seen

in Figure 3-4, which shows the number of test cases solved by the best individual in

a run, averaged across all runs - keeping the problem constant, a longer time spent

optimizing for the intermediate task allows a population to solve a higher number of

test cases from Problem Set 1-1, 1-2 Combo earlier as compared to those that spent

less time optimizing on the intermediate task. Additionally, this experiment revealed

the fact that harder problems can sometimes be a better intermediate signal than

easier ones - Problem Set 1-1 is an easier problem to solve for the population than

Problem Set 1-2 , and Figure 3-3 shows that the performance is much better when

optimizing for Problem Set 1-2 before Problem Set 1-1, 1-2 Combo, as opposed to

optimizing for Problem Set 1-1 before Problem Set 1-1, 1-2 Combo. This could be
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Figure 3-3: Percentage of runs which contained a program that solved all of the test
cases for the multi task learning experiment, when switching from solving Problem
Set 1-1 to Problem Set 1-1, 1-2 Combo.

because harder problems take more evolutionary leaps or changes to reach, and having

the constraint of keeping existing solutions to subproblems intact as you optimize for

a new task can make it harder for a given individual to solve a new problem. That

is, a population who only needs to solve Problem Set 1-1 will likely be better off

than a population who needs to solve both problems, but who already has a solution

to Problem Set 1-2 . With this in mind, the number of evolutionary leaps needed

to reach Problem Set 1-1, 1-2 Combo starting from a solution to Problem Set 1-2 is

likely much less than what’s needed when starting from Problem Set 1-1 .

3.3.3 Transferring Information from One Task to Another

Here we explore RQ1.1: does optimizing GE for one task make it more effective at

solving a similar task. The two problems we looked at were very similar, in that

they involved initializing a count variable, iterated through a string, and added to

that total count if some condition was met. Because they share similarities, our

original hypothesis would be that optimizing for one task first would be beneficial

when optimizing for the other. Specifically, a population that had previously been
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Figure 3-4: Average number of test cases solved by the best individual in each given
population, when switching from solving Problem Set 1-1 to Problem Set 1-1, 1-2
Combo.

optimized for solving Problem Set 1-1 would be better equipped to solve Problem Set

1-2 than a population solely focused on Problem Set 1-2 from the beginning, and we

tested this idea in Figures 3-6 and 3-5

From the results, we can see that the effect of optimizing for a previous task was

different in each case. When going from Problem Set 1-1 to Problem Set 1-2 in

Figure 3-6, pre-optimization seemed to have no effect on progress, as the population

performed basically identically in each case. However, when going from Problem

Set 1-2 to Problem Set 1-1 in 3-5, this pre-optimization seemed to produce positive

results, as the population performed better than what it originally would have on the

baseline in one case.

Looking at Figure 3-5, we can see that while too much pre-optimization on a

related problem can be harmful, pre-optimizing the right amount can be beneficial -

While the MedSwitch and LateSingleSwitch schemes perform worse than the baseline,

the EarlySingleSwitch performed better than the baseline result, even when including

the fact that 25% of the time was spent optimizing for a different problem. While

further work needs to be done to study the cause for this one-way information transfer,
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Figure 3-5: Percentage of runs which contained a program that solved all of the test
cases, when the task was switching from solving Problem Set 1-1 to Problem Set 1-2

for now it can be said at least that there can be one-way flow of information between

populations optimized for different tasks; in other words, given problems 𝐴 and 𝐵,

optimizing for one 𝐴 before 𝐵 can be neutral, while optimizing for 𝐵 before 𝐴 can be

beneficial. To answer RQ1.1: while pre-optimizing for a similar task can be beneficial

to the search, many other factors are also involved, such as how long the population

is optimized for the first problem.

3.3.4 Initializing with Preexisting Knowledge

Here we aim to answer RQ1.4: how can knowledge from existing programs be in-

corporated into GP? Because of the similarity in the solutions to each of the given

problems, our initial hypothesis was that initializing populations with individuals that

solved Problem Set 1-1 would be better equipped at solving Problem Set 1-2 , and

vice versa; the thought was that submodules useful for solving one problem could be

re-purposed for solving another problem, quicker than that feature being developed

on its own. This idea was tested, and the results of these tests are given in Figures

3-7 and 3-8.
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Figure 3-6: Percentage of runs which contained a program that solved all of the test
cases, when the task was switching from solving Problem Set 1-2 to Problem Set 1-1

One thing to notice here is that none of the runs initialized with solutions to

one problem did any better than the runs in which random initialization methods

were used. Additionally, when a single program which solved neither problem was

chosen as a starting point, performance was not hindered - in fact, it even solved the

problem in a higher number of runs than the baseline in Figure 3-7. While a decrease

in diversity could be attributed to the decreased performance of the populations in

which Human and Generated solutions were used during initialization, this doesn’t

seem likely given the fact that the NonDiverse initialization was competitive with the

baseline.

To answer RQ1.4: while this experiment isn’t able to conclude how existing

programs can be used to accelerate GE, it doesn’t rule out that they can be useful.

One thing that’s very likely is that the grammar and operators need to be further

optimized to allow for the sharing of information between populations - while in this

experiment, the grammar didn’t easily allow for structure of one problem to transfer

over to the structure of the other, section 3.3.2 shows the benefits of a grammar that

can easily incorporate knowledge from one task in solving a more complex task.
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Figure 3-7: Percentage of runs which contained a program that solved all of the test
cases, using various initialization strategies, when solving Problem Set 1-2 .
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Figure 3-8: Percentage of runs which contained a program that solved all of the test
cases, using various initialization strategies, when solving Problem Set 1-1 .
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Table 3.3: Experimental Results. Percent of runs solving all test cases at end is in
the Solved% column for each variant.

Variant Solved%
Baseline

Problem Set 1-1 97 (Best for Problem Set 1-1 )
Problem Set 1-2 48
Problem Set 1-1, 1-2 Combo 3

Switching
Problem Set 1-2 then Problem Set 1-1 , Early Switch 87
Problem Set 1-2 then Problem Set 1-1 , Midway Switch 83
Problem Set 1-2 then Problem Set 1-1 , Late Switch 48
Problem Set 1-1 then Problem Set 1-2 , Early Switch 49 (Best for Problem Set 1-2 )
Problem Set 1-1 then Problem Set 1-2 , Midway Switch 16
Problem Set 1-1 then Problem Set 1-2 , Late Switch 4
Problem Set 1-1 then Problem Set 1-1, 1-2 Combo, Early Switch 3
Problem Set 1-2 then Problem Set 1-1, 1-2 Combo, Early Switch 11
Problem Set 1-1 then Problem Set 1-1, 1-2 Combo, Midway
Switch

1

Problem Set 1-2 then Problem Set 1-1, 1-2 Combo, Midway
Switch

10

Problem Set 1-1 then Problem Set 1-1, 1-2 Combo, Late Switch 2
Problem Set 1-2 then Problem Set 1-1, 1-2 Combo, Late Switch 15 (Best for Problem Set 1-1, 1-2

Combo)
Initialization Schemes

Problem Set 1-1 , Human Solution, AllFromDir 84
Problem Set 1-1 , Human Solution, HalfFromDir 94
Problem Set 1-1 , Generated Solution, AllFromDir 78
Problem Set 1-1 , Generated Solution, HalfFromDir 70
Problem Set 1-1 , Human + Generated + Random (Third of Each) 71
Problem Set 1-1 Non Diverse Random, AllFromDir 93
Problem Set 1-1 Non Diverse Random, HalfFromDir 93
Problem Set 1-2 , Human Solution AllFromDir 37
Problem Set 1-2 , Human Solution HalfFromDir 42
Problem Set 1-2 Non Diverse Random, AllFromDir 51
Problem Set 1-2 Non Diverse Random, HalfFromDir 45
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Chapter 4

Using properties of human-generated

code to guide program synthesis with

grammatical evolution

Program synthesis with GP produces code that looks different than human-generated

code [29], and often includes extraneuous code [24]. Using the Github Corpus, we

measure properties describing human-generated code, along with a context-sensitive

measure. We use this knowledge to guide the search by incorporating a new selection

scheme. The selection combines lexicase selection and a score based on the difference

in code metrics and properties as well as context-sensitivity.

In this chapter, we aim to explore the following research questions:

1. RQ2.1: Does optimizing directly for a desired value for these code metrics

actually lead to a population where these metrics take on the desired value?

2. RQ2.2: Can optimizing directly for these code metrics result in increased test

case performance?

3. RQ2.3: Does optimizing for these code metrics make our solutions make our

solutions more humanlike, by reducing the program bloat?

4. RQ2.4: Is is easier to find solutions when starting from pieces of code that
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have been optimized to be more humanlike?

4.1 Methods

Below we describe the algorithm used to generate our new, context-sensitive code

metric, based on AST Counts.

4.1.1 Context-Based AST Metrics

Here we describe how we used context-sensitive AST counts to compute a score for

each of the programs. At a high level, our method looks at the distribution of AST

node types (BinOp, WhileNode, ForNode, etc) found within a certain context (within

a While loop, within a For loop, at the top-level of the program, etc), compares this

distribution with a given distribution (the corresponding distribution from our corpus

of GitHub programs), and the overall similarity between the two averaged across the

entire program is given as the score. For the rest of this section, we’ll first talk about

how we compute each context, and then move into how we compute scores from these

contexts.

Context Data Structures

Each program is composed of an AST with different types of nodes - nodes repre-

senting everything from While loops, For loops, Expressions, Binary Expressions, and

anything else. For this work, we chose to use three of these node types - While loops,

For loops, and Expression nodes, as the context, where all nodes beneath a While

node, for example, would be considered to be in the context of that While node. We

represented this using a trie-based data structure, outlined below.

Trie Based Data Structure Context is represented it as a Trie object which stores

node counts. Each Trie represents a specific context, and has a list of children for

each type of node we want to compute the context (in this case For, While, and Expr
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nodes), which are Tries themselves. This representation has the advantage of storing

the order of contexts (whether the program is inside a While loop inside of a For

loop, and not the other way around, for example).

How to Calculate Humanlike Score

Once we calculate the number of each type of node in each context for a given program,

we compare this to a given distribution of counts averaged across an entire corpus of

programs. For each node in our AST, we calculate the probability of that node type

occurring in the given context accross all programs in our chosen corpus. Formally,

let 𝐶 be the set of all contexts, 𝑇 be the set of all node types, and define 𝑁(𝑡|𝑐) to be

the number of nodes of type 𝑡 at a given context 𝑐. Then, this probability is written

as

𝑃𝑐𝑜𝑟𝑝𝑢𝑠(𝑡|𝑐) =
𝑁(𝑡|𝑐)∑︀

𝑡𝑖∈𝑇 𝑁(𝑡𝑖|𝑐)
(4.1)

.

Once we have the probabilities for each node type, there are multiple ways we can

combine them together to compute a final score, detailed below.

Regular Score In this regime, we multiply all of the probabilities together to

compute the final score, multiplied by a weighting function 𝑊 (𝑡) (described in the

next section). Because this resulting number will be very small and susceptible to

underflow errors, we convert everything to log probabilities. Let 𝑄𝑐𝑜𝑟𝑝𝑢𝑠 be the set

of all programs in a given corpus, and 𝑞 be a program. Our score 𝑆(𝑞) for a given

program 𝑞 is then:

𝑆(𝑞) =
∑︁

𝑛𝑜𝑑𝑒∈𝑞

𝑙𝑜𝑔(𝑊 (𝑡𝑛𝑜𝑑𝑒) * 𝑃𝑐𝑜𝑟𝑝𝑢𝑠(𝑡𝑛𝑜𝑑𝑒|𝑐𝑛𝑜𝑑𝑒)) (4.2)

where 𝑡𝑛𝑜𝑑𝑒 is the type of the node, and 𝑐𝑛𝑜𝑑𝑒 is the context of the node.

Normalized Score The previous regime favors programs which are shorter; to

correct for this, we divide by the number of nodes in the AST of the program being
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Figure 4-1: Frequency of each type of AST Node

looked at. This results in the following normalized score:

𝑆(𝑞) =

∑︀
𝑛𝑜𝑑𝑒∈𝑞 𝑙𝑜𝑔(𝑊 (𝑡𝑛𝑜𝑑𝑒) * 𝑃𝑐𝑜𝑟𝑝𝑢𝑠(𝑡𝑛𝑜𝑑𝑒|𝑐𝑛𝑜𝑑𝑒))

|𝑞|
(4.3)

where |𝑞| is the number of nodes in the given program’s AST.

Node Importance

In english, some words carry more meaning than others - for example, whether or not

the sentence contains the most common word, "the", gives no information, whereas

the less common term "Laplacian" carries much more information. Different nodes

also have vastly different frequencies - this is shown in Figure 4-1, which shows the

different. With this in mind, we chose to incorporate two different weighting schemes:

Equal Importance In this scheme, each node type has just as much influence as

any other type. This is given by

𝑊 (𝑡𝑛𝑜𝑑𝑒) = 1 (4.4)
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Inverse Frequency Importance In this weighting scheme, each node is given an

importance inversely proportional to the frequency with which it occurs across the

github corpus of programs. This is given by

𝑊 (𝑡𝑛𝑜𝑑𝑒) =

∑︀
𝑛𝑜𝑑𝑒′∈𝑐𝑜𝑟𝑝𝑢𝑠 𝑁(𝑡𝑛𝑜𝑑𝑒′)

𝑁(𝑡𝑛𝑜𝑑𝑒)
(4.5)

where 𝑁(𝑡) is the total number of occurences of this node type across all contexts,

across the entire corpus of programs.

Selection Based on Humanlike Score

Selecting for programs solely based on maximizing the above metrics likely wouldn’t

produce positive results - the goal in that case is no longer tied to the particular task

at hand. With this in mind, we use a scheme that allows a variable level of importance

to be placed on the humanlike score, using what we’ll call our H-Factor. The H-Factor

is a number between 0 and 1, and determines what percentage of the population will

be evaluated solely based on test case lexicase selection, and which would be selected

for based solely on the Humanlike score. For example, if H-Factor=.6, then 60% of

the individuals in a population would be compared against each other and selected

using only the Humanlike score, and the other 40% would be compared against each

other using lexicase selection on the test cases. This factor allows us to tweak the

importance of the score being used in the population. Algorithm 4 gives pseudocode

for this method.

4.2 Experimental Setup

Two goals of our experiments were to see if optimizing directly for these properties

would significantly change the distributions of these properties, and additionally if

directly optimizing for these properties leads to better performance in solving the

test cases. In order to answer these questions, we performed experiments in which we

optimize for these metrics with varying H-Factors. Then, we analyze the test case
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Algorithm 4 𝐿𝑒𝑥𝑖𝑐𝑎𝑠𝑒𝐴𝑛𝑑𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑃,𝐻,𝑁, 𝑇 )
Parameters: 𝑃 : Population undergoing selection, 𝐻: H-Factor, 𝑁 : Population size,
𝑇 : Tournament size
Return: Population
1: 𝑃𝑛𝑒𝑤 ← ∅ ◁ Population
2: while do|𝑃 | < 𝑁 ◁ Run until we’ve selected enough individuals
3: 𝐶 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝑃, 𝑇 ) ◁ Sample 𝑇 competitors 𝐶 from 𝑃 uniformly at random
4: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝐻 then ◁ With probability 𝐻, select based on Humanlike score
5: 𝑤𝑖𝑛𝑛𝑒𝑟 ←𝑀𝑜𝑠𝑡𝐻𝑢𝑚𝑎𝑛𝑙𝑖𝑘𝑒(𝐶) ◁ Get individual with highest Humanlike score
6: else
7: 𝑤𝑖𝑛𝑛𝑒𝑟 ← 𝐿𝑒𝑥𝑖𝑐𝑎𝑠𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐶) ◁ Perform lexicase tournament on 𝐶

8: 𝑃𝑛𝑒𝑤 ← 𝑃𝑛𝑒𝑤 ∪ 𝑤𝑖𝑛𝑛𝑒𝑟 ◁ Add winner to the growing population
9: return 𝑃𝑛𝑒𝑤 ◁ Return final population

performance and the distribution of scores in our population before and after our GE

run, relative to a baseline run on the same problem. These relate to RQ2.1, 2.2,

2.3.

We also wanted to get a better sense of how these metrics compare relative to

random search, to get an idea for how informative they are for solving the task at

hand. This relates to RQ2.2, 2.3.

We want to see if code that has been optimized for these metrics provides a better

starting point for GE than current initialization methods, while also seeing how these

metrics change as we optimize for different objectives. This relates to RQ2.3, 2.4.

There were four main types of experiments we ran. Each experiment is marked

with the main research questions it aims to answer.

1. Regularize for similarity to Github Corpus RQ2.2, 2.3 - Running the exper-

iments with various permutations Score Type and Node Importance schemes,

across a set of given benchmark problems.

2. Regularize for similarity to Gold Standard Solution RQ2.2, 2.3- Instead of

optimizing the population to match the distribution across an entire corpus

of programs, just match the distribution to that generated by a single gold-

standard solution.

3. Comparison to Random Search RQ 2.1, 2.2, 2.3 - Compare GE with an H-
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Variation Meaning
NoFactor H-Factor=0

SmallFactor H-Factor=0.1
MedFactor H-Factor=0.2
LargeFactor H-Factor=0.5
HugeFactor H-Factor=1.0

RegularScore Return raw probability
NormalizedScore Divide score by length of AST

AllImportant All nodes equally weighted
InverseFrequency Node weight inversely proportional to frequency

GoldStandard The corpus for the Humanlike score is a single, gold-standard solution

Table 4.1: Setup Number Meanings. The values here are the values that are used
in the experiments below. For example, an experiment with NormalizedScore in its
name will use the Normalized Score described in the methods section.

Factor=1.0 to a run in which test case fitness is ignored entirely in selection,

in order to determine how these metrics compare to random noise.

4. Humanlike Initialization RQ2.4 - Running experiments while selecting only for

the Humanlike score defined above, and then using the resulting population to

initialize a GE run with the normal settings, given in Table 4.2

Table 4.1 lists the different parameter settings we used.

In this section, we used the Github dataset mentioned in Chapter 1. For each

program, we generated an AST using Python’s built-in AST module. From this, we

were able to extract each of the stats mentioned above, along with the metrics that

we’ll define in the next section.

The parameters used in our experiments are shown in Table 4.1.

The bar charts in Figures 4-2, 4-3, 4-4, 4-5, and 4-6 show the percentage of the

test cases solved by the best program in each run, averaged across all runs. So the

higher the number, the higher the number of test cases the best individual in a pop-

ulation solved, on average. These results were averaged over 23 runs unless otherwise

specified. We define the Raw results as the percent of test cases solved by the best

program in each run, averaged across all runs for a given set of parameters. Raw

results can be found in the Appendix A.
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Parameter Value
Crossover Probability 0.8

Crossover Type Subtree Crossover
Mutation Probability 0.05

Mutation Type Point Mutation
Generations 150

Population Size 1000
Selection Lexicase

Mutate Duplicates True
Elite Size 1

Table 4.2: Baseline Parameter Settings - these are the parameters used for all GE
Runs, unless otherwise specified for a specific run.

Tables 4.4, 4.5, 4.7, and 4.9, and contain the rankings of each approach for each

experiment, measured in terms of the number of test cases solved by the best individ-

uals in the population, averaged over all of our runs. The setup that did the best gets

rank 1, the second best gets rank 2, and so on, and if two individuals get the same

result, they recieve the same rank. This is summed up across all tasks, so the setup

with the lowest rank did roughly the best across all the problems. We recognize that

this is a relatively noisy metric, however, which is why we still provide the raw scores

for each of the runs.

Tables 4.3, 4.6, 4.8, 4.10, and 4.11 show the significance of our experiments, using

the Mann-Whitney test for significance [9]. In these tables, our null hypothesis is that

the median difference between the baseline and the experimental setup in question

(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒−𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡) is positive, and we list the p-values for this null hypothesis.

When we reject this null hypothesis, the alternative hypothesis is that the median is

negative, meaning the median value from the experiment is higher than the median

value generated by the baseline setup. This means that when the null hypothesis is

rejected, the median number of test cases the experimental variant solves is higher

than the baseline. We set our confidence interval to by 95%, meaning a p-value has

to be less than 0.05 in order to be considered significant.
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4.3 Results

In this section, we’ll walk through the results of our experiments, with a discussion

of each. We’ll go through the thought process behind the experiments that were

conducted, and then discuss pitfalls and successes of each.

4.3.1 Regularize for similarity to Github Corpus

In this regime, we used the Humanlike score with various settings of the parameters

described above. This was done in order to answer RQ2.2 and RQ2.3: To see if

optimizing for this metric can improve tst case performance and readability of the

generated programs. When we conducted the experiments, few results were better

than the baseline, and most were on par or worse. This can be seen from the raw test

case results, the relative rankings of each setup, and the significance tests for each

experiment. In the rankings specifically, we see that when we used H-Factor = 0.5,

the rankings worsened significantly, which goes to show that optimizing too much for

matching the humanlike distribution of code can be detrimental to the performance of

the population. The significance test shows that none of the results were significantly

better than the baseline with a confidence interval of 95%.

For the CountOdds, Digits, Median, and Smallest problems, performance seemed

to be similar to the baseline when H-Factor=0.1 - 0.2.

One thing that Figure 4-2 showed was that factors helped when running the

VectorAverage - in this problem, many of the setups had an apparent improvement

over the baseline, which is a theme that will repeat itself later on. The results weren’t

significant according to Table 4.3, though.

Our thought from this was that even though the distribution of AST nodes across

a large corpus of programs reaches some average, that individual programs each have a

distribution that is different than the average. For example, while maybe the average

tree depth across all programs is found to be 8, it may be the case that most solutions

for a particular problem will end up having a tree depth of 13 because of increased

problem complexity, causing our methods to lead the search astray. With this in
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Figure 4-2: Results of Regularizing for similarity to Github Corpus. Measured in
average best percentage of test cases solved per run.

mind, it could be the case that optimizing for the average distribution of AST nodes

at different contexts could actually wash away information specific to the individual

problem at hand, as the program doesn’t need to be optimized for the average, but

rather for some distribution specific to the problem at hand, which can vary widely.

This observation motivated the next set of experiments.

Experiment Name SmallOrLarge Median CountOdds Digits Smallest VectorAverage
NormalizedScore, AllImportant, LargeFactor 0.9999 0.9362 1.0000 0.9997 N/A 0.3401
NormalizedScore, AllImportant, MedFactor 0.9927 0.6200 0.9982 0.9959 N/A 0.4952
NormalizedScore, AllImportant, SmallFactor 0.9921 0.5051 0.7290 0.9995 N/A 0.8455

NormalizedScore, InverseFrequency, LargeFactor 1.0000 0.8163 1.0000 1.0000 N/A 0.6173
NormalizedScore, InverseFrequency, MedFactor 0.9988 0.7261 0.9945 0.9589 N/A 0.5332
NormalizedScore, InverseFrequency, SmallFactor 0.9880 0.9362 0.5447 0.9920 N/A 0.6268

RegularScore, AllImportant, LargeFactor 1.0000 0.7261 1.0000 1.0000 N/A 0.0780
RegularScore, AllImportant, MedFactor 0.9370 0.8510 0.9997 0.9979 N/A 0.3566
RegularScore, AllImportant, SmallFactor 0.9775 0.2839 0.7290 0.9991 N/A 0.5237

RegularScore, InverseFrequency, LargeFactor 1.0000 0.9946 1.0000 1.0000 N/A 0.4345
RegularScore, InverseFrequency, MedFactor 0.9677 0.8865 0.9949 0.9742 N/A 0.2277
RegularScore, InverseFrequency, SmallFactor 0.9270 0.9103 0.7223 0.9952 N/A 0.8828

Table 4.3: Significance Testing: Regularizing to Github Corpus. Here we use the
Mann Whitney method for hypothesis testing between the Baseline and each of the
experimental settings, for each of the problems. The p-value is given for each prob-
lem. Full raw results can be found in the appendix, Table A.1.
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Score Type Node Weights Factor Total Rank
Baseline Baseline 0.0 24

RegularScore InverseFrequency 0.1 34
NormalizedScore AllImportant 0.1 28
NormalizedScore InverseFrequency 0.2 21

RegularScore InverseFrequency 0.2 24
NormalizedScore AllImportant 0.2 18

RegularScore AllImportant 0.2 26
RegularScore AllImportant 0.5 32
RegularScore AllImportant 0.1 25

NormalizedScore InverseFrequency 0.1 23
NormalizedScore AllImportant 0.5 34

RegularScore InverseFrequency 0.5 42
NormalizedScore InverseFrequency 0.5 41

Table 4.4: Results Table: Regularizing for similarity to Github Corpus. Values shown
are the sum of ranks of each method, across all problems. Full rankings per problem
found in A.2.

4.3.2 Regularize for similarity to Gold Standard Solution

In the previous regime, we calculated the Humanlike score relative to an entire corpus

of programs from Github. However, information can be lost inside of this average

across thousands of programs, and we wanted to see what happens when we try to

match the AST node distribution of a program that correctly solves the given problem.

In this regime, instead of calculating the target distribution from the average across

all programs in our corpus, we found a single solution to each of the problems in the

benchmarks, calculated the distribution from that, and used this distribution in order

to calculate the Humanlike score. In other words, we replaced our Github corpus with

a single program that solves the task at hand. Similar to the previous experiment,

this was done to answer RQ2.2 and RQ2.3: To see if optimizing for this metric can

improve tst case performance and readability of the generated programs.

From looking at the results, we found that it didn’t seem to have much of an

effect - while some runs showed an improvement over the baseline, it didn’t seem to be

consistent across multiple problems, and even if it was shown to be more promising on

some problems, it wouldn’t generalize to other problems. However, the VectorAverage

problem also seemed to be improved with these methods. Figure 4.6 in the appendix
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Figure 4-3: Results of Regularizing for similarity to Gold Standard Solution. Mea-
sured in average best percentage of test cases solved per run.

confirms that none of the results were significant.

It was also shown that solely optimizing for this metric wouldn’t be good enough

- when the H-Facor = 1.0, performance suffered dramatically. One experiment that

would be interesting to run is to compare this with random search, and see if this is

actually an improvement over that.

One thought for why this might be is that it turns out that test cases area actually

one of the best signals you can get as to whether you’ve solved the problem or not

- even if our measures are informative, in this test setup they would need to beat

how informative test cases are in order to show positive results. This motivates our

comparison of this scoring method with Random search, later in this section. Another

experiment, which we perform in the next section, is to initialize the populations with

a population that has been optimized for the Humanlike metrics.

4.3.3 Humanlike Initialization

Here we use the solutions generated from a GE run with an 𝐻 − 𝐹𝑎𝑐𝑡𝑜𝑟 = 1.0 as

the initial population during initialization. We do this to see if first optimizing the
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Score Type Node Weights Factor Total Rank
NormalizedScore InverseFrequency 0.2 11

RegularScore AllImportant 0.2 19
NormalizedScore InverseFrequency 0.1 17

RegularScore AllImportant 0.5 22
RegularScore AllImportant 0.1 9

Baseline Baseline 0.0 11
NormalizedScore InverseFrequency 0.5 30

RegularScore AllImportant 1.0 27
NormalizedScore InverseFrequency 1.0 34

Table 4.5: Results of Regularizing for similarity to Gold Standard Solution, Rankings.
Full raw results found in A.3 and rankings per problem found in A.4.

Table 4.6: Significance Testing: Regularizing to Gold Standard program. Here we
use the Mann Whitney method for hypothesis testing between the Baseline and each
of the experimental settings, for each of the problems. The null hypothesis is that the
scores are drawn from the same distribution. The p-value is given for each problem,
along with whether the average of the experiment was above or below the baseline.

Experiment Name Median CountOdds Digits VectorAverage SmallOrLarge
NormalizedScore, InverseFrequency, HugeFactor 1.0000 1.0000 1.0000 1.0000 0.9997
NormalizedScore, InverseFrequency, LargeFactor 0.9913 0.0004 1.0000 1.0000 0.6751
NormalizedScore, InverseFrequency, MedFactor 0.9471 3.581e-05 0.9201 0.9903 0.4105
NormalizedScore, InverseFrequency, SmallFactor 0.9896 3.581e-05 0.9518 0.9817 0.5569

RegularScore, AllImportant, HugeFactor 1.0000 0.9937 1.0000 1.0000 0.3071
RegularScore, AllImportant, LargeFactor 0.9987 3.581e-05 1.0000 0.9993 0.2314
RegularScore, AllImportant, MedFactor 0.9173 3.581e-05 0.9892 0.9423 0.8947
RegularScore, AllImportant, SmallFactor 0.7387 3.581e-05 0.9518 0.9583 0.3192
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Figure 4-4: Results of Initializing with a population optimized only for the Humanlike
score. Measured in average best percentage of test cases solved per run.

Score Type Node Weights Factor Total Rank
RegularScore AllImportant 1.0 8

NormalizedScore InverseFrequency 1.0 16
Baseline Baseline 0.0 10

RegularScore AllImportant 1.0 6
NormalizedScore InverseFrequency 1.0 18

Table 4.7: Results Table: Humanlike Initialization, Rankings. Rankings were com-
puted for each individual problem, and then summed across all solutions.

population towards the humanlike factor alone provides a good starting point for

future evolution, in order to help answer RQ2.4.

In the results, none of the settings seemed to have results consistently above the

baseline. However, one setting seemed to have reasonable results, which used the

Regular Score scheme, with all nodes equally important. In this case, the rankings

seemed to be at the same level or better than the baseline of simply lexicase selection

alone. Table 4.8 shows that the results aren’t significantly better across all runs, but

they are significantly better for the SmallOrLarge problem. With this in mind, we

chose to run experiments with a reduced set of experiments and more runs, to get a

more accurate significance measure.
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Experiment Name Digits SmallOrLarge CountOdds VectorAverage Median
NormalizedScore, InverseFrequency 1.0000 1.0000 1.0000 1.0000 0.9984

RegularScore, AllImportant 0.5872 3.581e-05 0.0809 0.2205 0.7188
GoldStandard, NormalizedScore, InverseFrequency 0.7799 3.581e-05 0.7290 0.9953 0.1326

GoldStandard, RegularScore, AllImportant 0.1891 0.5245 0.0809 0.4593 0.0218
TournamentBaseline 0.6294 0.5051 1.0000 0.9671 0.5235

Table 4.8: Significance Testing: Humanlike Initialization. Here we use the Mann
Whitney method for hypothesis testing between the Baseline and each of the experi-
mental settings, for each of the problems. The null hypothesis is that the scores are
drawn from the same distribution. The p-value is given for each problem, along with
whether the average of the experiment was above or below the baseline.

Figure 4-5: Second set of Results of Initializing with a population optimized only for
the Humanlike score. Measured in average best percentage of test cases solved per
run. Here 100 runs are used.

4.3.4 Humanlike Initialization, Constrained Set of Experiments

When looking at Figure 4-5, we can see that there were some runs that had improve-

ments over the baseline, especially in the VectorAverage problem. And looking at the

rankings alone in Table 4.9, we can see that this method ends up outperforming the

baseline for the VectorAverage problem. While these regimes aren’t significantly bet-

ter across the board, Table 4.10 shows that the Regular Score, All Important regime

is significantly better on the Smallest and Vector Average problems, which are both

some of the harder problems for GE to solve.
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Score Type Node Weights Factor Total Rank
Baseline Baseline 0.0 16

NormalizedScore InverseFrequency 1.0 14
RegularScore AllImportant 1.0 13

Table 4.9: Results Table: Humanlike Initialization Constrained, Rankings (100 runs)

Experiment Name SmallOrLarge Smallest Digits VectorAverage CountOdds SumOfSquares
NormalizedScore, InverseFrequency 1.0000 0.0005 0.9989 0.9981 0.3797 0.4537

RegularScore, AllImportant 1.0000 8.3869e-12 0.0612 0.0064 0.5225 0.7633

Table 4.10: Significance Testing: Humanlike Initialization, Constrained set of exper-
iments (100 runs). Here we use the Mann Whitney method for hypothesis testing
between the Baseline and each of the experimental settings, for each of the problems.
The null hypothesis is that the scores are drawn from the same distribution. The
p-value is given for each problem, along with whether the average of the experiment
was above or below the baseline.

4.3.5 Humanlike Score vs. Random Search

In this experiment, GE was run with two different modes:

• Random Search: perform GE while ignoring test case fitness and Humanlike

score entirely.

• Humanlike Optimization: Perform GE while ignoring test case fitness, and only

using Humanlike score to evaluate the fitness of programs.

This was done to answer RQ2.1, RQ2.2, and RQ2.3: to see if this score improves

program performance and readability, along with seeing if directly optimizing for this

score changes the distribution of Humanlike score in the population.

Figure 4-6 shows the performance of Random search as compared to Human-

like optimization, and Table 4.11 shows the tests for significant differences between

Random Search and optimizing for Humanlike Score only.

As can be seen from the chart, random search appears to perform much better than

just optimizing for Humanlike score, indicating that optimizing for our Humanlike

score could actually hinder performance. This is confirmed by the significance test in

Table 4.11 - In every problem and setting, the null hypothesis that the experiment

median is lower than the random search median is accepted with high probability.
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Figure 4-6: Results of comparing our Humanlike score to Random Search. Measured
in average best percentage of test cases solved across all runs.

Experiment Name SmallOrLarge Digits Smallest CountOdds Median VectorAverage
NormalizedScore, InverseFrequency 1.0000 1.0000 1.0000 0.8516 1.0000 1.0000

RegularScore, AllImportant 1.0000 1.0000 0.9982 0.8516 1.0000 0.9762
GoldStandard, NormalizedScore, InverseFrequency 1.0000 1.0000 1.0000 0.8516 1.0000 1.0000

GoldStandard, RegularScore, AllImportant 1.0000 0.9999 0.9608 0.8516 0.9999 0.9380

Table 4.11: Significance Testing: Humanlike Score vs. Random Search. Here we use
the Mann Whitney method for hypothesis testing between the Baseline and each of
the experimental settings, for each of the problems. The null hypothesis is that the
scores are drawn from the same distribution. The p-value is given for each problem,
along with whether the average of the experiment was above or below the baseline.
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However, what do the solutions look like? Below are three sample solutions: the

first is drawn from the Random Search run, and the next two are drawn from the

Humanlike Optimization runs with two different settings.

• Random Search:

b0 = bool(); b1 = bool(); b2 = bool()
i0 = int(); i1 = int(); i2 = int()
res0 = int()
while b0:

while divInt(abs(( ( mod(in2,i1) * mod(( int(0.0) * int(685.0) ),i2) ) *
divInt(( int(758.0) - in1 ),int(3.0)) )),divInt(abs(in0),int(4.0))) >= int(906.0):

b1 = False
if loopBreak > loopBreakConst or stop:

break
loopBreak += 1

b1 = max(min(min(int(2.0), int(8232.0)), max(in2, min(in0, divInt(in2,abs(int(4.0)))))),
int(2.0)) != mod(res0,min(i1, in1))
b2 = mod(( in0 - int(42.0) ),mod(i1,i2)) >= int(330.0)
if loopBreak > loopBreakConst or stop:

break
loopBreak += 1

While still simple, this program features two nested while loops, one of which

is completely useless.

• Humanlike Optimization, Normalized Score, Inverse Frequency Node

Importance:

b0 = bool(); b1 = bool(); b2 = bool()
i0 = int(); i1 = int(); i2 = int()
res0 = int()
if ( not not ( ( not not not not not not not not not not not not not not not not
not not not not not not not not not not not not not True and not not not not
not not not not not not not not not not abs(int(6.0)) >= i2 ) or ( True or not
not not not not not not not not False ) ) and not not not not not not not not
not not not not not not not not not not not False ):
b2 = not not not not not not not not not not not not not not not not not not
not not not b0

This code features many repeated ’not’ statements - this is likely a degenerate

behavior of the Normalized Score.

• Humanlike Optimization, Regular Score, Equal Node Importance:
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b0 = bool(); b1 = bool(); b2 = bool()
i0 = int(); i1 = int(); i2 = int()
res0 = int()
b0 = not ( b0 or abs(( ( abs(max(max(mod(int(8.0),abs(max(in2, in0))), i0),
int(28.0))) + abs(( int(5.0) * ( divInt(in2,min(min(i1, min(int(9.0),
max(i2, in2))), in2)) - ( in0 + in0 ) ) )) ) + int(4.0) )) != i1 )

While mildly complex, this doesn’t feature multiple nested loops.

The first thing that sticks out is the normalized score - it provides many repeated

"not" statement, which is undesirable. While the normalized score was motivated

by not making our score just be a regularization on program length, it also creates

degenerate solutions which cause very common nodes to appear, as this gives a bonus

to the overall score. This goes to show the fragility of these metrics, and the care in

which they must be designed.

While the solution generated by the random solution and the second Humanlike

Optimization experiment are relatively similar in complexity, the Random Search

solution contains two nested while loops (one of which is completely useless, simply

setting a variable to False every iteration), the program generated by the Humanlike

Optimization was simpler, and didn’t have the problem of generating nested loops.

In addition to the above, it shows that the context sensitivity potentially needs to be

tuned, as in this case, loops were avoided.

4.3.6 Changes in Humanlike Score throughout the experiments

In this section, we look at the ways in which the Humanlike Score changed throughout

the course of the experiments. We look only at the Humanlike score that uses the

settings with Regular Score, Trie Data Structure, and All Nodes equally important.

Figure 4-7 shows the Humanlike scores computed across the programs at the

beginning and end of a GE run in which only the Humanlike score was optimized

for, along with the scores of the programs from the Github dataset. One thing

that can be seen here is the fact that it shifts significantly in the positive direction

over time - however, it does this to the point where it overshoots the average across

all programs in the Github corpus. Another thing that can be seen is that many
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Figure 4-7: Distribution of Humanlike Scores across the initial and final populations
of the run in which only the Humanlike score was optimized for. Scores for the github
corpus shown as well.
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Figure 4-8: Distribution of Humanlike Scores across the initial and final populations
of the Humanlike Initialization run. Scores for the github corpus shown as well.

programs are within the same increasingly narrow band of values as the Humanlike

score is optimized for - this has the potential to reduce diversity. One thing we can

learn from this is that when you optimize for this score, it might constrain the values

to a more narrow range.

While Figure 4-7 showed the results of only optimizing for the Humanlike score,

Figure 4-8 shows the results of initializing from a population that has been optimized

for the Humanlike score only, and then running standard GE on the given population.

What can be seen here is that the average score value drops back to a much lower

value than before, which is the same as what it started at in the previous point.

This is interesting - it shows that the population is naturally resisting a shift towards

higher scores.
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Chapter 5

Conclusions and Future Work

5.1 Transferability Conclusions

In Chapter 3, attempts at transferring information between populations solving sep-

arate but related problems were explored, utilizing the first two problems of the first

6.00.1x problem set. Specifically, we explored the effects of 1.) giving a population

intermediate goals to solve before placing a complex task in front of it, 2.) pre-

optimizing a population to solve one task before optimizing it to solve another task,

and 3.) initializing populations with solutions to related problems as opposed to

random individuals. The main conclusions are listed below:

1. When solving a complex task with Genetic Programming, using a more difficult

to attain intermediate goal as opposed a simpler one was found to be beneficial

in terms of allowing the population to solve a complex problem with multiple

parts. Additionally, more time spent optimizing for the intermediate goal was

shown to be beneficial.

2. While pre-optimizing a population to one task before solving another related

task can be harmful or neutral, it also has the potential to be beneficial un-

der the right circumstances. Both the problem to pre-optimize for and the

amount of pre-optimization done factor into how it will affect performance of

the population.
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3. The structure of the problem and the grammar are important for knowledge

transfer - if the grammar isn’t set up to transfer the structure of one problem to

another, then initializing from solutions to one problem might not necessarily

help it solve a related problem.

5.2 Humanlike Optimization Conclusions

In Chapter 4, we defined a context-sensitive metric for scoring programs relative to

their similarity to a given target population. We used this score as an optimization

objective along with fitness, looked at the qualitative effects of optimizing for this

objective, and investigated using this objective in the initialization step. The main

conclusions from these experiments are enumerated below:

1. Optimizing for the Humanlike score has the potential to create degenerate solu-

tions if not designed carefully, and thus need to be carefully designed to produce

reasonable programs.

2. Optimizing for a Humanlike score leads the results to be in a relatively con-

strained range of Humanlike scores - broadening this could potentially be a way

to add more diversity to the population.

3. While the Humanlike scores don’t necessarily help test case performance, qual-

itative analysis shows that they may be helpful in making programs more hu-

manlike. Whether or not this just occurs because the score applies parsimony

pressure or not still needs to be determined.

4. These scores are something that can be optimized for, and by optimizing for

them, you can change their average value within a population. However, when

performing a normal GE run, they usually end up drifting back to lower values -

even if you try to maximize this score across a population, the natural tendency

during GE is to drift to lower values.
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5. Optimizing for the Humanlike Score alone was shown to be significantly less

effective than Random Search at solving the test cases.

6. Initializing from a population of programs that had been pre-optimized for the

Humanlike score only didn’t have a significant effect in many problems, but was

statistically significant in the Smallest and VectorAverage problems, which are

some of the hardest problems we looked at.

5.3 Future Work

While much work was put into this thesis, there are still many directions we could

potentially take this. A few are listed below:

1. While the grammars used in these experiment were each specific to a given

problem or pair of problems, there are grammars that can express solutions

to many problems. Such grammars would likely allow for much easier transfer

of structure between problems, so it would be interesting to repeat the task

switching experiment with a larger number of tasks with such a grammar.

2. One big problem the concontext-sensitive score was supposed to solve was the

fact that nested loops happen a lot in GE and can be harmful. However, the

grammars we currently use are very restricted, making this less of an issue.

It would be much more interesting to test these measures out on a much less

restricted grammar, as this would be more likely to show the value of the Hu-

manlike Score.

3. Some of the Humanlike Score variants performed better than others, which

shows it can have an effect on the search. One future direction is to further

explore different forms for this Humanlike Score, and try to tune it until it can

speed up GE search.

4. While the effects were unclear of initializing a population with solutions to a

related problem, this is likely due to the fact that the grammar and operators
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weren’t optimized for transferring the information between problems. One fu-

ture direction of work would be to try to design grammars that are effective at

transferring structure between problems.
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Appendix A

Tables

A.0.1 Experiments on Regularizing to Github Corpus

A.0.2 Experiments on Regularizing to Gold Standard Solution

A.0.3 Humanlike Initialization

A.0.4 Humanlike Initialization, Constrained

A.0.5 Humanlike Score vs. Random Search
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Table A.1: Results Table: Regularize for similarity to Github Corpus, raw scores.
Values shown are measured in terms of the average percentage of test cases solved by
the best individual per run.

Problem Score Type Node Weights Factor best_percent_test_cases_solved_mean
CountOdds N/A N/A N/A 0.271
CountOdds NormalizedScore AllImportant 0.1 0.250
CountOdds NormalizedScore AllImportant 0.2 0.280
CountOdds NormalizedScore AllImportant 0.5 0.221
CountOdds NormalizedScore InverseFrequency 0.1 0.247
CountOdds NormalizedScore InverseFrequency 0.2 0.245
CountOdds NormalizedScore InverseFrequency 0.5 0.206
CountOdds RegularScore AllImportant 0.1 0.256
CountOdds RegularScore AllImportant 0.2 0.262
CountOdds RegularScore AllImportant 0.5 0.206
CountOdds RegularScore InverseFrequency 0.1 0.254
CountOdds RegularScore InverseFrequency 0.2 0.253
CountOdds RegularScore InverseFrequency 0.5 0.217

Digits N/A N/A N/A 0.994
Digits NormalizedScore AllImportant 0.1 0.995
Digits NormalizedScore AllImportant 0.2 0.994
Digits NormalizedScore AllImportant 0.5 0.992
Digits NormalizedScore InverseFrequency 0.1 0.992
Digits NormalizedScore InverseFrequency 0.2 0.994
Digits NormalizedScore InverseFrequency 0.5 0.994
Digits RegularScore AllImportant 0.2 0.994
Digits RegularScore AllImportant 0.5 0.994
Digits RegularScore InverseFrequency 0.1 0.956
Digits RegularScore InverseFrequency 0.2 0.993
Digits RegularScore InverseFrequency 0.5 0.991
Median N/A N/A N/A 0.995
Median NormalizedScore AllImportant 0.1 0.977
Median NormalizedScore AllImportant 0.2 0.911
Median NormalizedScore InverseFrequency 0.2 0.969
Median RegularScore AllImportant 0.2 0.892
Median RegularScore AllImportant 0.5 0.783
Median RegularScore InverseFrequency 0.1 0.984
Median RegularScore InverseFrequency 0.2 0.935

SmallOrLarge N/A N/A N/A 0.256
SmallOrLarge NormalizedScore AllImportant 0.1 0.041
SmallOrLarge NormalizedScore AllImportant 0.2 0.069
SmallOrLarge NormalizedScore AllImportant 0.5 0.036
SmallOrLarge NormalizedScore InverseFrequency 0.1 0.127
SmallOrLarge NormalizedScore InverseFrequency 0.2 0.161
SmallOrLarge NormalizedScore InverseFrequency 0.5 0.000
SmallOrLarge RegularScore AllImportant 0.1 0.039
SmallOrLarge RegularScore AllImportant 0.2 0.062
SmallOrLarge RegularScore AllImportant 0.5 0.021
SmallOrLarge RegularScore InverseFrequency 0.1 0.088
SmallOrLarge RegularScore InverseFrequency 0.2 0.124
SmallOrLarge RegularScore InverseFrequency 0.5 0.000

Smallest NormalizedScore AllImportant 0.1 1.000
Smallest NormalizedScore AllImportant 0.2 1.000
Smallest NormalizedScore AllImportant 0.5 1.000
Smallest NormalizedScore InverseFrequency 0.1 1.000
Smallest NormalizedScore InverseFrequency 0.2 1.000
Smallest NormalizedScore InverseFrequency 0.5 1.000
Smallest RegularScore AllImportant 0.1 1.000
Smallest RegularScore AllImportant 0.2 1.000
Smallest RegularScore AllImportant 0.5 1.000
Smallest RegularScore InverseFrequency 0.1 1.000
Smallest RegularScore InverseFrequency 0.2 1.000
Smallest RegularScore InverseFrequency 0.5 1.000

VectorAverage N/A N/A N/A 0.009
VectorAverage NormalizedScore AllImportant 0.1 0.007
VectorAverage NormalizedScore AllImportant 0.2 0.011
VectorAverage NormalizedScore AllImportant 0.5 0.011
VectorAverage NormalizedScore InverseFrequency 0.1 0.055
VectorAverage NormalizedScore InverseFrequency 0.2 0.049
VectorAverage RegularScore AllImportant 0.1 0.061
VectorAverage RegularScore AllImportant 0.2 0.009
VectorAverage RegularScore AllImportant 0.5 0.014
VectorAverage RegularScore InverseFrequency 0.1 0.005
VectorAverage RegularScore InverseFrequency 0.2 0.011
VectorAverage RegularScore InverseFrequency 0.5 0.010
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Table A.2: Results Table: Regularizing for similarity to Github Corpus, Rankings
per problem.

Score Type Node Weights Factor Total Rank Median CountOdds Digits VectorAverage SmallOrLarge Smallest
Baseline Baseline 0.0 24 1 2 2 9 1 10

RegularScore InverseFrequency 0.1 34 2 5 11 12 5 1
NormalizedScore AllImportant 0.1 28 3 7 1 11 8 1
NormalizedScore InverseFrequency 0.2 21 4 9 6 3 2 1

RegularScore InverseFrequency 0.2 24 5 6 7 6 4 1
NormalizedScore AllImportant 0.2 18 6 1 3 7 6 1

RegularScore AllImportant 0.2 26 7 3 5 10 7 1
RegularScore AllImportant 0.5 32 8 12 4 4 11 1
RegularScore AllImportant 0.1 25 10 4 10 1 9 1

NormalizedScore InverseFrequency 0.1 23 10 8 9 2 3 1
NormalizedScore AllImportant 0.5 34 10 10 8 5 10 1

RegularScore InverseFrequency 0.5 42 10 11 10 8 12 1
NormalizedScore InverseFrequency 0.5 41 10 13 5 10 12 1

Table A.3: Results Table: Regularizing for similarity to Gold Standard Solutions,
Raw Scores

Problem Score Type Node Weights Factor best_percent_test_cases_solved_mean
CountOdds N/A N/A N/A 0.271
CountOdds NormalizedScore InverseFrequency 0.1 0.255
CountOdds NormalizedScore InverseFrequency 0.2 0.279
CountOdds NormalizedScore InverseFrequency 0.5 0.250
CountOdds NormalizedScore InverseFrequency 1.0 0.081
CountOdds RegularScore AllImportant 0.1 0.277
CountOdds RegularScore AllImportant 0.2 0.260
CountOdds RegularScore AllImportant 0.5 0.245
CountOdds RegularScore AllImportant 1.0 0.163

Digits N/A N/A N/A 0.994
Digits NormalizedScore InverseFrequency 0.1 1.000
Digits NormalizedScore InverseFrequency 0.2 1.000
Digits NormalizedScore InverseFrequency 0.5 0.927
Digits NormalizedScore InverseFrequency 1.0 0.045
Digits RegularScore AllImportant 0.1 1.000
Digits RegularScore AllImportant 0.2 1.000
Digits RegularScore AllImportant 0.5 1.000
Digits RegularScore AllImportant 1.0 0.487
Median N/A N/A N/A 0.995
Median NormalizedScore InverseFrequency 0.1 0.966
Median NormalizedScore InverseFrequency 0.2 0.965
Median NormalizedScore InverseFrequency 0.5 0.706
Median NormalizedScore InverseFrequency 1.0 0.582
Median RegularScore AllImportant 0.1 0.973
Median RegularScore AllImportant 0.2 0.959
Median RegularScore AllImportant 0.5 0.873
Median RegularScore AllImportant 1.0 0.590

SmallOrLarge N/A N/A N/A 0.256
SmallOrLarge NormalizedScore InverseFrequency 0.1 0.114
SmallOrLarge NormalizedScore InverseFrequency 0.2 0.111
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.000
SmallOrLarge RegularScore AllImportant 0.1 0.150
SmallOrLarge RegularScore AllImportant 0.2 0.172
SmallOrLarge RegularScore AllImportant 0.5 0.044
SmallOrLarge RegularScore AllImportant 1.0 0.000
VectorAverage N/A N/A N/A 0.009
VectorAverage NormalizedScore InverseFrequency 0.1 0.010
VectorAverage NormalizedScore InverseFrequency 0.2 0.049
VectorAverage NormalizedScore InverseFrequency 0.5 0.008
VectorAverage NormalizedScore InverseFrequency 1.0 0.001
VectorAverage RegularScore AllImportant 0.1 0.047
VectorAverage RegularScore AllImportant 0.2 0.007
VectorAverage RegularScore AllImportant 0.5 0.013
VectorAverage RegularScore AllImportant 1.0 0.011

Table A.4: Results Table: Single Program Objective, Rankings

Score Type Node Weights Factor Total Rank Digits CountOdds Median SmallOrLarge VectorAverage
NormalizedScore InverseFrequency 0.2 11 1 1 4 5 1

RegularScore AllImportant 0.2 19 1 4 5 2 8
NormalizedScore InverseFrequency 0.1 17 1 5 3 4 5

RegularScore AllImportant 0.5 22 1 7 6 6 3
RegularScore AllImportant 0.1 9 1 2 2 3 2

Baseline Baseline 0.0 11 2 3 1 1 6
NormalizedScore InverseFrequency 0.5 30 3 6 7 10 7

RegularScore AllImportant 1.0 27 4 8 8 7 4
NormalizedScore InverseFrequency 1.0 34 5 9 9 7 9
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Table A.5: Results Table: Humanlike Initialization, Raw Scores (23 Runs)

Problem Score Type Node Weights Factor best_percent_test_cases_solved_mean
CountOdds N/A N/A N/A 0.271
CountOdds NormalizedScore InverseFrequency 1.0 0.104
CountOdds RegularScore AllImportant 1.0 0.269
CountOdds RegularScore AllImportant 1.0 0.287

Digits N/A N/A N/A 0.994
Digits NormalizedScore InverseFrequency 1.0 1.000
Digits RegularScore AllImportant 1.0 0.633
Digits RegularScore AllImportant 1.0 1.000
Median N/A N/A N/A 0.995
Median NormalizedScore InverseFrequency 1.0 0.572
Median NormalizedScore InverseFrequency 1.0 0.968
Median RegularScore AllImportant 1.0 1.000
Median RegularScore AllImportant 1.0 1.000

SmallOrLarge N/A N/A N/A 0.256
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.000
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.068
SmallOrLarge RegularScore AllImportant 1.0 0.256
SmallOrLarge RegularScore AllImportant 1.0 0.352
VectorAverage N/A N/A N/A 0.009
VectorAverage NormalizedScore InverseFrequency 1.0 0.002
VectorAverage NormalizedScore InverseFrequency 1.0 0.049
VectorAverage RegularScore AllImportant 1.0 0.044
VectorAverage RegularScore AllImportant 1.0 0.195

Table A.6: Results Table: Humanlike Initialization, Rankings

Score Type Node Weights Factor Total Rank Digits SmallOrLarge VectorAverage CountOdds Median
RegularScore AllImportant 1.0 8 1 1 3 3 1

NormalizedScore InverseFrequency 1.0 16 1 4 2 7 3
Baseline Baseline 0.0 10 2 2 4 2 2

RegularScore AllImportant 1.0 6 3 3 1 1 1
NormalizedScore InverseFrequency 1.0 18 7 5 5 4 4

Table A.7: Results Table: Humanlike Initialization Constrained, Raw Scores (100
Runs)

Problem Score Type Node Weights Factor best_percent_test_cases_solved_mean
CountOdds NormalizedScore InverseFrequency 1.0 0.295
CountOdds RegularScore AllImportant 1.0 0.284

Digits N/A N/A N/A 0.994
Digits NormalizedScore InverseFrequency 1.0 0.852
Digits RegularScore AllImportant 1.0 0.989
Median N/A N/A N/A 0.985
Median NormalizedScore InverseFrequency 1.0 0.958
Median RegularScore AllImportant 1.0 0.990

Problem1 N/A N/A N/A 0.130
Problem1 NormalizedScore InverseFrequency 1.0 0.130
Problem1 RegularScore AllImportant 1.0 0.130

ProblemBoth N/A N/A N/A 0.656
ProblemBoth NormalizedScore InverseFrequency 1.0 0.731
ProblemBoth RegularScore AllImportant 1.0 0.636
SmallOrLarge N/A N/A N/A 0.190
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.104
SmallOrLarge RegularScore AllImportant 1.0 0.264

Smallest N/A N/A N/A 1.000
Smallest NormalizedScore InverseFrequency 1.0 1.000
Smallest RegularScore AllImportant 1.0 1.000

SumOfSquares N/A N/A N/A 0.080
SumOfSquares NormalizedScore InverseFrequency 1.0 0.068
SumOfSquares RegularScore AllImportant 1.0 0.053
VectorAverage N/A N/A N/A 0.019
VectorAverage NormalizedScore InverseFrequency 1.0 0.123
VectorAverage RegularScore AllImportant 1.0 0.039
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Table A.8: Results Table: Humanlike Initialization Constrained, Rankings (100 runs)
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Table A.9: Results Table: Humanlike Score vs. Random Search, Raw Scores

Problem Score Type Node Weights Factor best_percent_test_cases_solved_mean
CountOdds N/A N/A N/A 0.215
CountOdds NormalizedScore InverseFrequency 1.0 0.087
CountOdds NormalizedScore InverseFrequency 1.0 0.094
CountOdds RegularScore AllImportant 1.0 0.162
CountOdds RegularScore AllImportant 1.0 0.168

Digits N/A N/A N/A 0.926
Digits NormalizedScore InverseFrequency 1.0 0.046
Digits NormalizedScore InverseFrequency 1.0 0.124
Digits RegularScore AllImportant 1.0 0.242
Digits RegularScore AllImportant 1.0 0.392
Median N/A N/A N/A 0.650
Median NormalizedScore InverseFrequency 1.0 0.573
Median NormalizedScore InverseFrequency 1.0 0.574
Median RegularScore AllImportant 1.0 0.594
Median RegularScore AllImportant 1.0 0.604

SmallOrLarge N/A N/A N/A 0.003
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.000
SmallOrLarge NormalizedScore InverseFrequency 1.0 0.000
SmallOrLarge RegularScore AllImportant 1.0 0.000
SmallOrLarge RegularScore AllImportant 1.0 0.000

Smallest N/A N/A N/A 0.765
Smallest NormalizedScore InverseFrequency 1.0 0.525
Smallest NormalizedScore InverseFrequency 1.0 0.606
Smallest RegularScore AllImportant 1.0 0.634
Smallest RegularScore AllImportant 1.0 0.634

VectorAverage N/A N/A N/A 0.016
VectorAverage NormalizedScore InverseFrequency 1.0 0.001
VectorAverage NormalizedScore InverseFrequency 1.0 0.003
VectorAverage RegularScore AllImportant 1.0 0.008
VectorAverage RegularScore AllImportant 1.0 0.010

Table A.10: Results Table: Humanlike Score vs. Random Search, Rankings.

Score Type Node Weights Factor Total Rank SmallOrLarge Digits VectorAverage Median Smallest CountOdds
Baseline Baseline 0.0 5 1 1 1 1 1 1

RegularScore AllImportant 1.0 10 2 2 2 2 2 2
RegularScore AllImportant 1.0 15 2 3 3 3 3 3

NormalizedScore InverseFrequency 1.0 23 2 5 4 5 5 4
NormalizedScore InverseFrequency 1.0 22 2 4 5 4 4 5
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